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Abstract

A stupid litle exercise in which I try to figure out how do really
works in the solution presented in the “knight’s quest” section of the
chapter “A Fistful of Monads” of the book Learn You a Haskell For
Great Good!.

The book treats lists as “indeterminate answers” (i.e., a list of possible
values that the “answer” could be, as opposed to a single “answer” value).

It also uses List as a Monad, along with do, so I wanted to try to figure
all this out.

1 Original Code, with Some Re-writing

I start with the code from Learn You a Haskell, and do a little re-writing to
eliminate do.

1.1 Main Code

Some initial setup:

module KnightMoves where

import Control.Monad

-- | (Column, Row)

type KnightPos = (Int,Int)

Here is the original definition of moveKnight from the book:

-- | The original function from Learn You a Haskell

moveKnight :: KnightPos -> [KnightPos]

moveKnight (c,r) = do
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(c’,r’) <- [(c+2,r-1),(c+2,r+1),(c-2,r-1),(c-2,r+1)

,(c+1,r-2),(c+1,r+2),(c-1,r-2),(c-1,r+2)

]

guard (c’ ‘elem‘ [1..8] && r’ ‘elem‘ [1..8])

return (c’,r’)

What the heck is is going on here? The first thing I did was to rewrite
that function as mkw to move that long list out of the code body, using a
where clause to simplify things (hence the w in the function name):

-- | "moveKnight where" -- first re-write

mkw :: KnightPos -> [KnightPos]

mkw (c,r) = do

(c’,r’) <- moves

guard (c’ ‘elem‘ [1..8] && r’ ‘elem‘ [1..8])

return (c’,r’)

where

moves = [(c+2,r-1),(c+2,r+1),(c-2,r-1),(c-2,r+1)

,(c+1,r-2),(c+1,r+2),(c-1,r-2),(c-1,r+2)

]

Then, we rewrite to translate the do into what it represents (>>= and >>

operators).

-- | 2nd rewrite, without "do"

mkw2 :: KnightPos -> [KnightPos]

mkw2 (c,r) =

--

-- Rules for ’do’ rewrite:

--

-- do e1 ; e2 = e1 >> e2

-- do p <- e1; e2 = e1 >>= \p -> e2

--

moves >>= \(c’,r’) -> gard (c’,r’) >> [(c’,r’)]

where

moves = [(c+2,r-1),(c+2,r+1),(c-2,r-1),(c-2,r+1)

,(c+1,r-2),(c+1,r+2),(c-1,r-2),(c-1,r+2)

]

gard (c’,r’) = if (c’ ‘elem‘ [1..8] && r’ ‘elem‘ [1..8])

then [()]

else []

We also define a special gard function (intentionally misspelled) that
does the same thing as guard. Remember, guard’s job is to yield either
mzero (from MonadPlus), which is just [] in this case, or return (), which,
in the case of the List monad, is just [()], the list containing a single empty
tuple (also known as “unit”).
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The use of >> after gard will either substitute another value for the
incoming value (if it’s [()]), or fail to do anything if the incoming value is
the empty list [] (because we’re mapping a function to the incoming list,
which, if empty, results in an empty list, no matter what the function is).

Then we do the exact same sort of rewrite with another function from
the book’s solution, in3. Here’s the original code:

in3 :: KnightPos -> [KnightPos]

in3 start = do

first <- mkw2 start -- was: moveKnight, not mkw

second <- mkw2 first

mkw2 second

The rewrite of this function looks pretty much the same as that for
moveKnight, except there is no occurrence of the >> operator:

-- | Re-write, without "do"

in32 :: KnightPos -> [KnightPos]

in32 start =

mkw2 start >>= \first -> mkw2 first >>= \second -> mkw2 second

Finally, the book defines the expression that really tells us whether we
can reach one position from another in three moves. There no rewrite re-
quired; it’s just a couple of straight function calls:

canReachIn3 :: KnightPos -> KnightPos -> Bool

canReachIn3 start end = end ‘elem‘ in3 start

1.2 Unit Test

The best way, in the long run, to test that we’ve rewritten the functions
properly, as we iteratively edit and test our code, is to simply assert that
we have done so. To that end, we write easily-repeatable test code.

import KnightMoves

import Test.Hspec

import Data.Set as Set

main :: IO ()

main = hspec $ do

describe "various implementations" $ do

it "moveKnight == mkw" $

(Here follows the actual assertion:)
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(Set.fromList $ moveKnight (5,5)) == (Set.fromList $ mkw (5,5))

it "mkw == mkw2" $

(Set.fromList $ mkw (5,5)) == (Set.fromList $ mkw2 (5,5))

it "in3 == in32" $

(Set.fromList $ in3 (5,5)) == (Set.fromList $ in32 (5,5))

2 Explanation of How It All Works

2.1 MoveKnight (or mkw2)

As you recall, the definitions for >>= and >> (for List) are as follows:

xs >>= f = concat (map f xs)}

xs >> ys = xs >>= \_ -> ys

>> can be rewritten as xs >> ys = concat (map (\_-> ys) xs). You
can see that >> will substitute ys for xs only if xs is non-empty (or non-
fail, since fail is the empty list). Otherwise, >> does nothing, and the
result is still [].

In moveKnight, we feed an entire list of (possible) knight positions (col-
umn, row) into a function, which, for each element of the list (by virtue
of map), uses the guard (gard) function to yield either [] (if the condition
fails) or [()], which is not an empty list (if the condition succeeds). That
guard result is then fed through >>, which attempts to substitute a single-
element list containing the original input value ((c’,r’), an element of the
original list of knight positions). That substitution will fail if guard failed,
since mapping a function to an empty list results in an empty list, no matter
what the function is.

The result of this giant function mapped to a list of knight positions is
a list of singleton lists that looks something like this:

[ [(1,1)], [(2,2)], [], [(4,4)] ]

We “flatten” this list out by applying concat to it, which concatenates
all the lists into one big list, resulting in

[ (1,1), (2,2), (4,4) ]

2.2 in3 or in32

in3 (in32) begins with the result of moveKnight (mkw2), a monad (List),
and binds it (>>=, “bind”) to a giant function. This function is applied to
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each member (labelled first of the list generated by moveKnight, per the
definition of >>=.

first is itself passed to moveKnight (again), which generates a new
list of positions which is in turn bound to a new (nested) function, which
processes each element of the moves generated from first. (The elements
of the second list are named second when passed to the bound function.)

moveKnight is called for a third time on the elements of the second list
(each elementwise named second), to generate a possible list of moves from
the second move.

At the end of all this, we’ve called moveKnight three times, constantly
expanding the list of possible 3-move positions of the knight. (Remember,
we’re calling concat . map all the time, so we’re constantly flattening lists
of lists.)

At the end of all this, we have a list of moves possible by moving the
knight three times. Then we just ask if our desired ending position is in that
list.
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